Definition (Dual Space)
Let
$$(X, ||\cdot||)$$
 be a normed space. Its dual space
 $X^* := B(X, |K)$ is the space of all the bounded
linear maps from X to $|K$ with the operator
norm $||T|| := \sup\{|Tx|: ||x|| \le 1\}$.

$$\frac{E \times ample}{For \ 1 \le p < \infty, \ l^{p} := \left\{ (x_{i}k_{i}) : \ x_{i}k_{i} \in \mathbb{K}, \ \sum_{n=1}^{\infty} |x_{i}k_{i}|^{p} < \infty \right\}.$$

$$\int_{1}^{\infty} := \left\{ (x_{i}k_{i}) : \ x_{i}k_{i} \in \mathbb{K}, \ \sup_{i} |x_{i}k_{i}| < \infty \right\}.$$

(a)
$$(l')^* = l^\infty$$

Proof: Define $T: l^\infty \rightarrow (l')^*$ by $(Tx)(y) = \sum_{i=1}^{\infty} \chi_i(k) y(k)$
for any $\chi \in l^\infty$ and $y \in l'$.
(i) T is well defined.
For any $\chi \in l^\infty$, $y \in l'$,
 $|Tx(y)| = |\sum_{i=1}^{\infty} \chi_i(k) y_i(k)| \le \sum_{i=1}^{\infty} |\chi_i(k)| |y(k)|$

$$\leq \sup_{i} |\mathbf{x}(\mathbf{k})| \sum_{i=1}^{\infty} |\mathbf{y}(\mathbf{k})|$$

= $||\mathbf{x}||_{\infty} ||\mathbf{y}||_{1}$

(ii) T is an isometry
By (i),
$$\|Tx\|_{op} \leq \|x\|_{oo}$$
 for any $x \in \ell^{\infty}$.
We wish $\|Tx\|_{op} \geq \|x\|_{oo}$ for any $x \in \ell^{\infty}$.
For any $\epsilon > 0$, there exists $k \in lN$ such that
 $|\pi(k_0)| \geq \|x\|_{oo} - \epsilon$
Take $g \in \ell'$ with $g(k_0) = 1$ and $g(k) = 0$ for $k \neq k_0$
Then $\|y\|_{1} = \sum_{k=1}^{\infty} |g(k)| = |g(k_0)| = 1$.
And $\|Tx\|_{op} \geq |Tx(y)| = |\sum_{k=1}^{\infty} x(k) g(k_0)|$
 $= |x(k_0) g(k_0)|$
 $= |x(k_0)|$
 $\geq ||x||_{oo} - \epsilon$
Letting $\epsilon \rightarrow 0$ gives $\|Tx\|_{op} \geq \|x\|_{oo}$.

(iii) T is surjective.
Pick any
$$\phi \in (\ell^{1})^{*}$$
. We want to find on $\chi \in \ell^{\infty}$
such that $Tx = \phi$.
Put $\chi(k) = \phi(e_{k})$. By definition of bounded
linear operator, $\chi \in \ell^{\infty}$.
For any $y \in \ell'$.
 $T\chi(y) = \sum_{k=1}^{\infty} \chi(k) y(k)$
 $= \sum_{k=1}^{\infty} \phi(e_{k}) y(k)$
 $= \phi(\sum_{k=1}^{\infty} y(k)e_{k})$ linearity
 $= \phi(y)$ Schander base
Hence, $T\chi = \phi$.

(b) For
$$| , $(d^p)^* = l^p$ where $\frac{1}{p} + \frac{1}{q} = 1$.
Proof: Define $T: l^p \rightarrow (l^p)^*$ by $T \times (y) = \sum_{k=1}^{\infty} \times (k) y(k)$
for any $\chi \in l^p$ and $y \in l^p$.$$

 \square

(i) T is well defined.
For any
$$x \in l^{2r}$$
 and $y \in l^{p}$
 $|Tx(y)| = |\sum_{k=1}^{\infty} x(k) y(k)|$
 $\leq \sum_{k=1}^{n} |x(k)| |y(k)|$
 $\leq ||x||_{q} ||y||_{p}$ Holder's inequality
 $\leq \infty$
(ii) T is an isometry.
By (i), $||Tx||_{op} \leq ||x||_{q}$ for any $x \in l^{2r}$
We wish $||Tx||_{op} \geq ||x||_{q}$ for any $x \in l^{2r}$
For any $x \in l_{q}$, write $x(k) = |x(k)| e^{iQ_{k}}$.
Pot $y(k) = |x(k)|^{q-1} e^{-iQ_{k}} / ||x||_{q}^{q-1}$
Then $\sum_{k=1}^{\infty} |y(k)|^{p} = ||x||_{q}^{q-1} \sum_{k=1}^{\infty} |x(k)|^{2r}$
 $= 1||x||_{q}^{-2r} \sum_{k=1}^{\infty} |x(k)|^{2r}$
Therefore, $y \in l^{p}$ and $||y||_{p} = 1$.

And
$$\||Tx|\|_{op} \ge |Tx(y)|$$

$$= \left|\sum_{k=1}^{\infty} x(k) y(k)\right|$$

$$= \||x|\|_{op}^{-(q-1)} \sum_{k=1}^{\infty} |x(k)| e^{i\theta_{k}} |x(k)|^{q-1} e^{-i\theta_{k}}$$

$$= \||x|\|_{op}^{-(q-1)} \sum_{k=1}^{\infty} |x(k)|^{q}$$

$$= \||x|\|_{op}^{-(q-1)} \||x||_{op}^{q}$$

$$= \||x|\|_{op}^{q}$$

(iii) T is surjective.
Pick any
$$\phi \in (l^{p})^{*}$$
. We want to find an $\chi \in l^{p}$
such that $T_{\chi} = \phi$.
Put $\chi(k) = \phi(e_{k})$.
Consider $y_{n}(k) = \frac{2}{\phi(e_{k})} \frac{\phi}{\phi(e_{k})} \frac{\phi}{\phi(e_{k})}$, $k \leq n$.
Then $y_{n} \in l^{p}$.